

Industry Day Netex

Networking in Extreme Environments *April 7, 2003*

Steve Griggs, Program Manager 703-696-2312

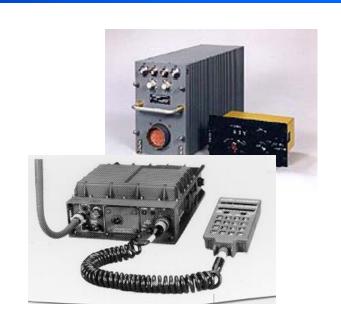
sgriggs@darpa.mil

Netex Objective

UWB systems
have an
advantage in
short range
high-multipath
environments

Develop Military Ultra Wideband (UWB) sensors and communications systems for operation in extreme environments

- Gain understanding of the effects of UWB system operation on existing narrow band spectrum users
- Improve the physical layer design and functionality of UWB systems
- Enable non-cooperative UWB channel access
- Create UWB enhanced wireless routing protocols
- Develop multifunction waveform system


Deliver systems that exploit the unique benefits of the UWB physical layer to provide robust communications in complex terrain

Task 1 UWB Understanding

- Two track approach: EMI Testing and Simulations
- Select a team of impartial government agencies, labs, and universities to develop a standard UWB test methodology
- Provide the contractors access to state-of-theart test and measurement facilities for experiments and tests

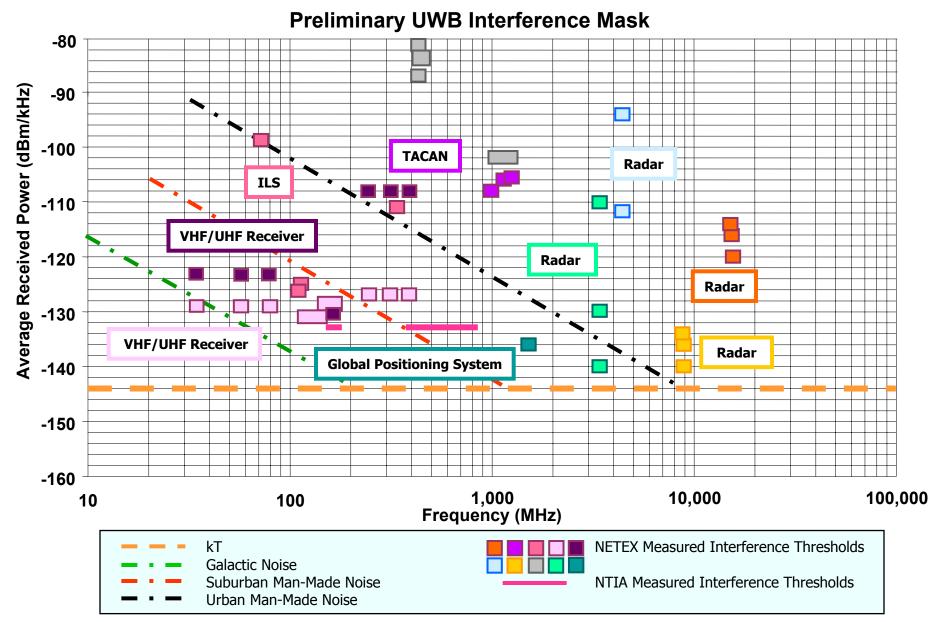
- Use modified MIL STD 461E & MIL STD 464 test procedures to conduct documented and repeatable measurements of UWB radiation (20 MHz to 25 GHz) on an assortment of military systems
- Verification of the models through real system tests

Netex Program Framework

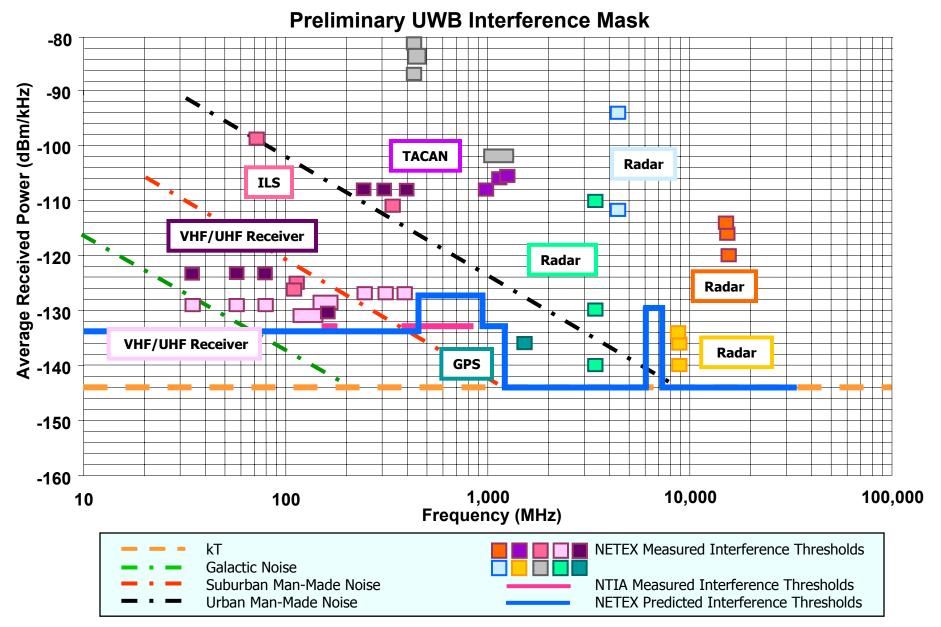
EMI Testing

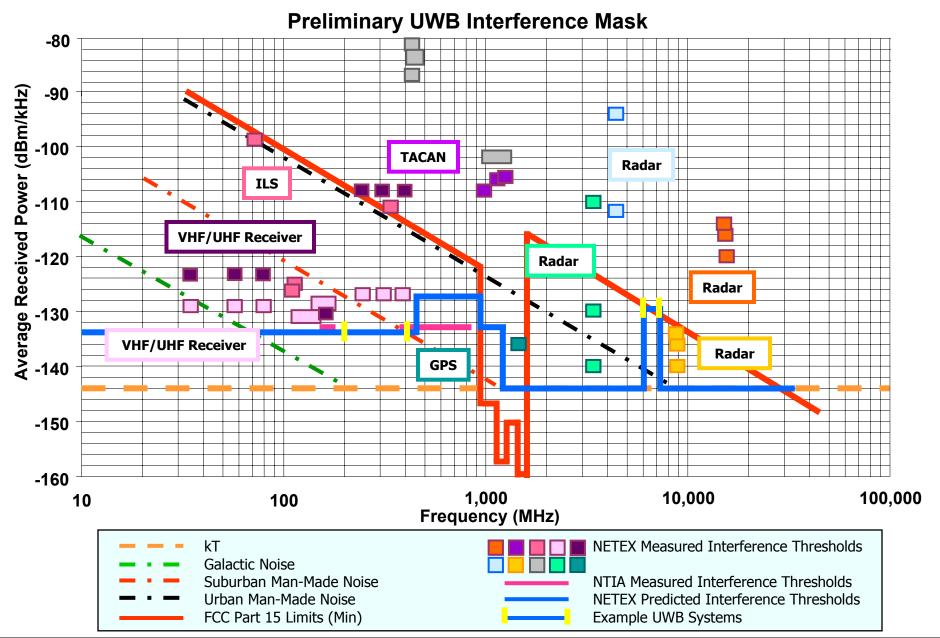
Modeling & Simulations

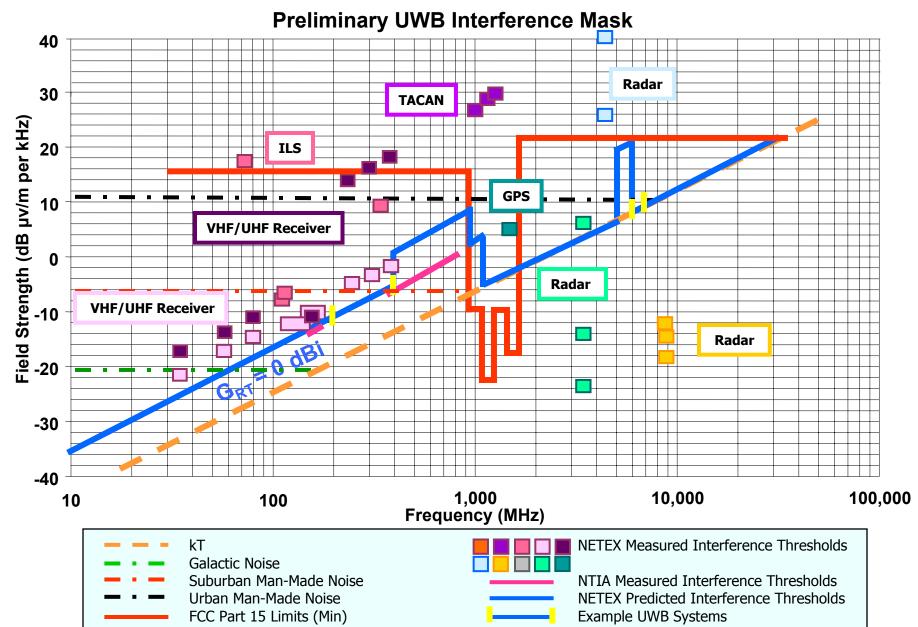
UWB System Design


Physical Layer Networking

Demonstrate Multiple Systems Classes







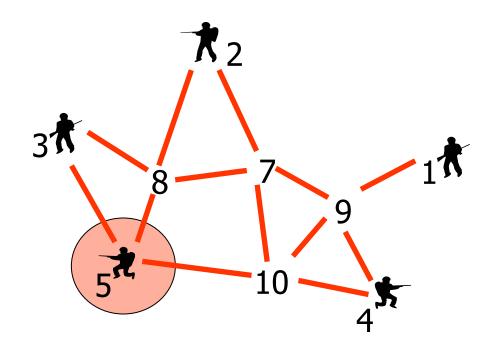
Broad Range of Systems

We can Design UWB Systems that Co-Exist with Legacy Receivers and Support Militarily Useful Functions...

System Type	Power dBm	Range meters	Data Rate	Freq	BW	S/N dB	I/N dB
Hand Held	14	500	10 Kbps	200-400 MHz	200 MHz	10	6 @ 20m
High Data / Short Range	10	100	10 Mbps	6 – 7 GHz	1 GHz	7	-9 @ 10m
RADAR 1 m ²	40	500	10 Kpps	6 – 7 GHz	1 GHz	2	-21 @ 10m
Personnel RADAR 1 m ²	50	100	100 pps	850 MHz	300 MHz	6.6	20 @ 10m

Many Classes – Multiple Implementations

Hand Held Communications



UWB Link Data

Range	500 m
Data Rate	10 kbps
S/N@ Max Range	10 dB
Peak Power	14 dBm
Pulse Width	5 nsec
Center Frequency	300 MHz
Bandwidth	200 MHZ
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB
Noise Figure	1 dB

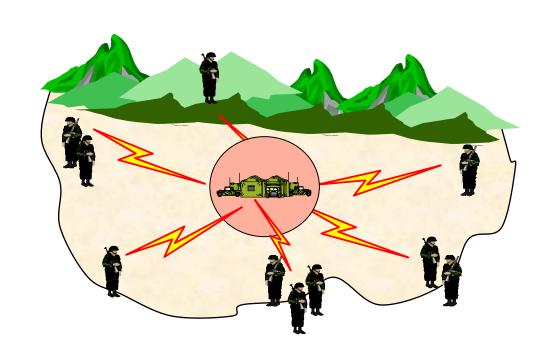
EMI to Legacy Systems

EMI Zone	20 m
I/N	6 dB
Noise Figure	10 dB
Band Width	25 kHz
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- Tactical Combat Network
- Robust Operations in Urban and Multipath
- On-the-move Unit Communications
- Precision Timing / Geo-Localization

High Data Rate – Short Range



UWB Link Data

_	
Range	100 m
Data Rate	10 Mbps
S/N@ Max Range	7 dB
Peak Power	10 dBm
Pulse Width	1 nsec
Center Frequency	6.5 GHz
Bandwidth	1 GHZ
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB
Noise Figure	1 dB

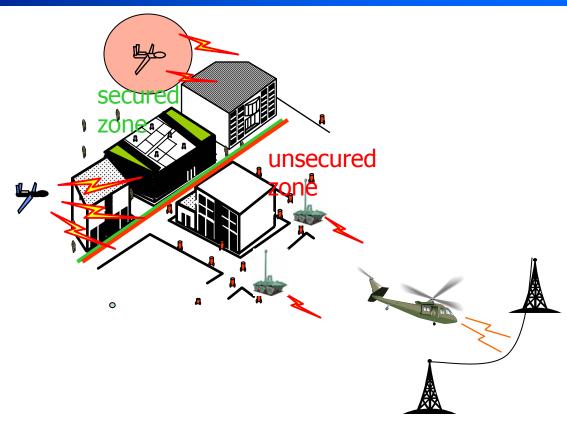
EMI to Legacy Systems

EMI Zone	10 m
I/N	-9 dB
Noise Figure	5 dB
Band Width	5 MHz
Antenna Gain	-10 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- Unit Level Integrated Operational Picture
- Video to Foxhole
- Remote Surveillance Network

UWB Radar



UWB Radar

Range	500 m
Radar Cross Section	1 m ²
Pulse Repetition Rate	10 Kpps
S/N@ Max Range	2 dB
Peak Power	40 dBm
Pulse Width	1 nsec
Center Frequency	6.5 GHz
Bandwidth	1 GHZ
Antenna Gain	24 dB
Antenna Height	2 m
Noise Figure	1 dB
Total System Loss	2 dB

EMI to Legacy Systems

EMI Zone	10 m
I/N	-21 dB
Noise Figure	5 dBm
Band Width	5 MHz
Antenna Gain	-10 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- High Resolution Imaging
 - Through the Wall
 - Human detection
- Micro UAV/ROV Collision Avoidance
- Wire Detection

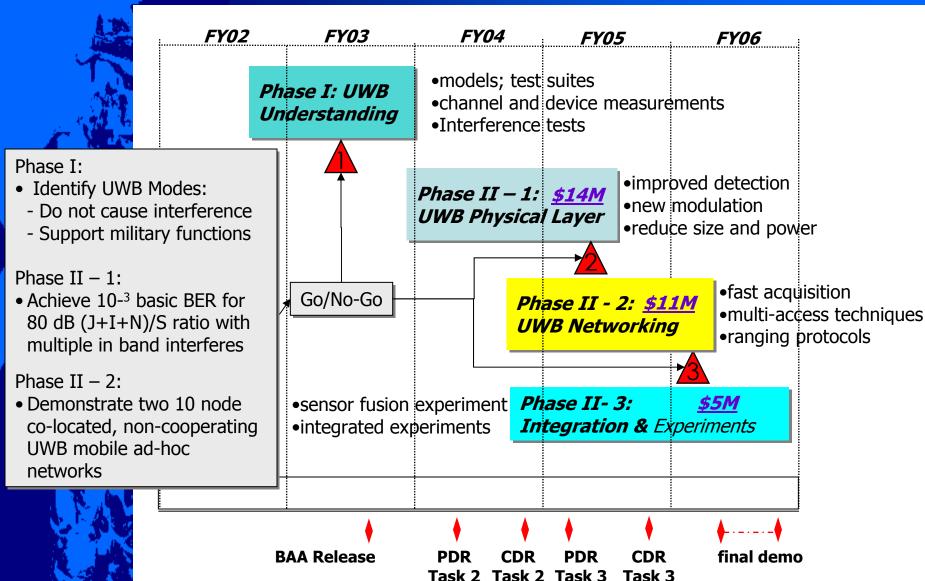
UWB Personnel Radar

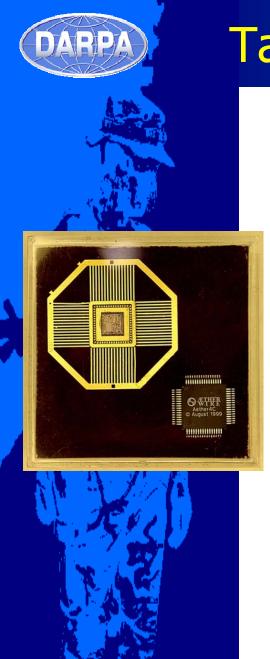
UWB Radar

Range Radar Cross Section Pulse Repetition Rate	100 m 1 m ² 100 pps
S/N@ Max Range Peak Power	6.6 dB 50 dBm
Pulse Width	3.3 nsec
Center Frequency	850 MHz
Bandwidth	300 MHZ
Antenna Gain	2 dB
Antenna Height	2 m
Noise Figure	1 dB
Total System Loss	1 dB

EMI to Legacy Systems

EMI Zone	10 m
I/N	20 dB
Noise Figure	5 dBm
Band Width	6 MHz
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB


Implementation:


• Personnel Detection

Netex Program Plan

Task 2 UWB Physical Layer

Goal: Push UWB PHY layer design to the point where it is capable of reliably supporting advanced LPD, ranging, location and networking protocols.

Achieve 10⁻³ uncorrected BER for 80 dB (J+I+N)/S Ratio with multiple in band interferes

Challenges

- Integrate the lessons learned from the testing, modeling and simulations
- Coexist with legacy systems and intended jammers
- Develop improved detection, modulation and coding approaches to achieve 10-30 dB enhancement in system performance
- Develop interference excision techniques
- Develop simultaneous multi-function (comm, radar, timing and location)
- Develop robust LPD waveforms

Output: Small, reliable, deployable and affordable UWB radios for military networks

Task 3 UWB Networking

GOAL

Algorithms, Protocols, and Distributed Control for robust, scalable ad-hoc UWB networking

Demonstrate two 10 node colocated, non-cooperating UWB mobile ad-hoc networks

Challenges

- precision time-based ad-hoc network
- self-organization & robustness using software adaptation
- modular design and open interfaces for 'interstack' awareness
- simultaneous location, ranging, and comm
- extensible to density of 100 to >10,000 nodes in 1km²

Output: Unique ad-hoc networking protocols that exploit the benefits of the UWB physical layer to provide robust communications

Task 4 Final Challenge Experiments

unsecured

Hand held communications network

- 500 meters range
- 10 kbps data rate
- 2 days continuous operations

Video sensor network

- 100 meters range
- 10 Mbps data rate
- 30 days autonomous operations

UWB radar sensor integrated into network

- Detect 1 m² target
- 500 meters range
- 30 days autonomous operations

Industry Day Netex

Networking in Extreme Environments *April 7, 2003*

Steve Griggs, Program Manager 703-696-2312

sgriggs@darpa.mil